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ABSTRACT
Future high-performance computing systems may face fre-
quent failures with their rapid increase in scale and complex-
ity. Resilience to faults has become a major challenge for
large-scale applications running on supercomputers, which
demands fault tolerance support for prevalent MPI applica-
tions. Among failure scenarios, process failures are one of
the most severe issues as they usually lead to termination
of applications. However, the widely used MPI implemen-
tations do not provide mechanisms for fault tolerance. We
propose FTA-MPI (Fault Tolerance Assistant MPI), a pro-
gramming model that provides support for failure detection,
failure notification and recovery. Specifically, FTA-MPI ex-
ploits a try/catch model that enables failure localization and
transparent recovery of process failures in MPI applications.
We demonstrate FTA-MPI with synthetic applications and
a molecular dynamics code CoMD, and show that FTA-MPI
provides high programmability for users and enables conve-
nient and flexible recovery of process failures.
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1. INTRODUCTION
With the expected increase of mean time between failure

(MTBF) in exascale systems [9, 5], along with more com-
plex software and hardware stacks and runtimes, scientists
require programming models that allow them to cope with
failures efficiently and to increase productivity while devel-
oping large HPC applications. Although the MPI+X is ex-
pected to be widely used in exascale system—where X refers
to node thread parallelism models, such as OpenMP—MPI
does not provide mechanisms for fault tolerance: the stan-
dard specifies that if a failure occurs, the state of MPI is un-
defined, thus applications can do little more than abort. One
of the grand challenges for exascale computing is therefore
to provide practical fault-tolerance programming models for
MPI applications.

Previous work has proposed fault-tolerant MPI libraries
and interfaces [3, 8, 13]. For instance, the ULFM interface
is a proposal under consideration to incorporate fault tol-
erance in the MPI Standard and provides functionality to
deal with process failures, to repair communicators, and to
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TRY(Communicator) { // MPI processes enter the try block
// Execute MPI calls

} // Agree on whether or not a failure occured
CATCH (PROC_FAIL_EXCEPTION ) {
// Receover MPI and application state

}ENDTRY;

Figure 1: Try/catch programing model that FTA proposes

propagate failures. In our attempt to make use of the pro-
gramming interface that these approaches propose in large
HPC programs, we have found the following limitations [10]:

• A substantial amount of code changes are required to use
these interfaces. Code changes involve failure detection
and fixing broken communicators; most applications do
not have a central place where all communicators are cre-
ated or repaired. Therefore programmers need to repeat
many steps to enable resilience.

• Failure localization lacks sufficient support. Most models
require checking returned error codes of MPI operations
which can be cumbersome and can increase programming
complexity, or provide error handlers. In the latter case,
when a failure is detected (which can occur in an arbitrary
MPI function call) an error handler is called. However,
programmers do not know where in the code the failure
originated or was detected from, hence limits flexible re-
covery.

To address these limitations, we propose FTA1, a try/-
catch programming model (see Figure 1) that allows trans-
parent recovery of MPI communicators while providing fail-
ure localization guarantees—failures are detected and fixed
within a user-defined code block. With FTA, programmers
declare a conversation [4] (i.e., a set of MPI ranks that par-
ticipate in executing a set of MPI calls) in a try code block.
At the end of the conversation, all participating processes
agree or disagree on a failure. If a failure is detected, FTA
automatically executes recovery code, which involves repair-
ing application-level state (e.g., by reading a checkpoint) and
MPI-level state (e.g., repairing communicators).

Hassani et al. proposed FA-MPI [7], a transactional re-
silience scheme for MPI. This work shares some of the ideas
of FTA, for example, it allows transactions, which are sim-
ilar in nature to FTA conversations; however, it works only
for non-blocking MPI operations. In addition, FA-MPI re-
quires users to write code to recover MPI state, such as

1Fault Tolerance Assistant
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ABSTRACT
We propose FTA, a programming model that provides fail-
ure localization and transparent recovery of process failures
in MPI applications.

1. INTRODUCTION
With the expected increase of mean time between fail-

ure (MTBF) in exascale systems, along with more complex
software and hardware stacks and runtimes, scientists re-
quire programming models that allow them to cope with
failures e�ciently and to increase productivity while devel-
oping large HPC applications. Although the MPI+X is ex-
pected to be widely used in exascale system—where X refers
to node thread parallelism models, such as OpenMP—MPI
does not provide mechanisms for fault tolerance: the stan-
dard specifies that if a failure occurs, the state of MPI is un-
defined, thus applications can do little more than abort. One
of the grand challenges for exascale computing is therefore
to provide a practical fault-tolerance programming model
for MPI applications.

Previous work has proposed fault-tolerant MPI libraries
and interfaces [2, 6, 9]. For instance, the ULFM interface
is a proposal under consideration to incorporate fault tol-
erance in the MPI Standard and provides functionality to
deal with process failures, to repair communicators, and to
propagate failures. In our attempt to make use of the pro-
gramming interface that these approaches propose in large
HPC programs, we have found the following limitations [7]:

• A substantial amount of code changes are required to use
these interfaces. Code changes involve failure detection
and fixing broken communicators; most applications do
not have a central place where all communicators are cre-
ated or repaired. Therefore programmers need to repeat
many steps to enable resilience.

• Failure localization lacks su�cient support. Most models
require checking returned error codes of MPI operations
which can be cumbersome, or provide error handlers. In
the latter case, when a failure is detected (which can oc-
cur in an arbitrary MPI function call) an error handler is
called. However, programmers do not know where in the
code the failure originated or was detected from, hence
limits flexible recovery.

To address these limitations, FTA provides a try/catch
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TRY(Communicator) {
/* Do computation here */
MPI_Send();
MPI_Recv();

} /* Transparent Agreement */
CATCH (PROC_FAIL_EXCEPTION ) {
/* Clean up and recover states here */
/* Repair Communicator */
FTA_Comm_repair(SHRINK);
/* Restart conversation */
RETRY;

}ENDTRY;

Figure 1: Try/catch programing model.

model (see Figure 1), which allows transparent recovery
of MPI communicators while providing failure localization
guarantees—failures are detected and fixed within a user-
defined code block. With FTA, programmers declare a con-

versation [3] (i.e., a set of MPI ranks that participate in
executing a set of MPI calls) in a try code block. At the
end of the conversation, all participating processes agree or
disagree on a failure. If a failure is detected, FTA auto-
matically executes recovery code, which involves repairing
application-level state (e.g., by reading a checkpoint) and
MPI-level state (e.g., repairing communicators).
Hassani et al. proposed FA-MPI [5], a transactional re-

silience scheme for MPI. This work shares some of the ideas
of FTA, for example, it allows transactions, which are similar
in nature to FTA conversations; however, it works only for
non-blocking MPI operations. In addition, FA-MPI requires
users to write code to recover MPI state, such as communi-
cators. The goal of FTA is to perform this transparently.
Two failure recovery models can be used in MPI: shrink-

ing recovery, in which the number of resources (i.e., MPI
processes and nodes) are reduced after a failure, or non-

shrinking recovery, in which failed processes and nodes are
replaced so that applications can continue with the original
number of resources [7]. FTA supports both shrinking and
non-shrinking recovery models.
We have implemented a prototype of FTA in Open MPI

and have tested it in a synthetic and in an mini HPC ap-
plication, CoMD [1]. In the rest of the abstract we describe
the design challenges and implementation details of FTA.

2. FTA DESIGN
The objective of FTA is to isolate the scope of failures and

enable flexible shrinking/non-shrinking recovery with minor
changes to applications. We deploy the try/catch mecha-
nism to locate where failures occur. In addition, we design
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Figure 2: FTA exception handling (try/catch) model and primitives

communicators. The goal of FTA is to perform this recov-
ery transparently.

Two failure recovery models can be used in MPI: shrink-
ing recovery, in which the number of resources (i.e., MPI
processes and nodes) are reduced after a failure, or non-
shrinking recovery, in which failed processes and nodes are
replaced so that applications can continue with the original
number of resources [10]. FTA supports both shrinking and
non-shrinking recovery models.

We have implemented a prototype of FTA in Open MPI
and have tested it in a synthetic and in an mini HPC appli-
cation, CoMD [1]. In the rest of the paper we describe the
design challenges and implementation details of FTA.

2. FTA DESIGN
The objective of FTA is to isolate the scope of failures and

enable flexible shrinking/non-shrinking recovery with minor
changes to applications. We deploy the try/catch mecha-
nism to locate where failures occur. In addition, we design
communicator management, which intelligently repairs all
broken communicators upon failures.

2.1 Exception Handling (Try/Catch) Model
Exception handling is a classical mechanism of program-

ming languages to build fault-tolerant programs [11]. It al-
lows programmers to specify the recovery procedure when
an exception is captured. The overview of FTA model and
primitives are illustrated in Figure 2.

A challenge of exception handling in distributed systems
is the complexity of asynchronous interacting activities. The
idea of Coordinated Atomic Actions (CA actions) or conver-
sations [4] has been proposed to control such complexity. In
FTA, a conversation starts with a TRY statement, which
sets a setjmp point for retry. The conversation encloses the
interactions of a group of processes, that is, activities within
one communicator and its subsets. Therefore, the granu-
larity of failure detection is a conversation. Process failures
are recognized as exceptions and raised to all members of
the associated communicator.

To detect process failures within a conversation, FTA sets
the error handler of designated communicator for the con-
versation. When MPI operations fail due to process failures,
a PROC_FAIL_EXCEPTION is raised by the error handler. Pro-
cesses that detect the failure will skip the rest of work in the

conversation and jump to CATCH block, while other processes
continue execution. At the end of a conversation, all pro-
cesses within the conversation reach consensus on whether or
not a failure occurred. Therefore, failures are guaranteed to
be acknowledged by all the non-failed processes of the com-
municator at the end of a conversation. In our prototype
implementation, we use the MPI_Comm_agree function pro-
vided by ULFM to perform the consensus. We expect that
if the FTA programming model is incorporated in the MPI
standard, other consensus protocol implementations can be
used in the MPI library.

The recovery procedure is located in a CATCH block which
usually includes code for cleaning up states, repairing com-
municators (transparently facilitated by FTA), and data re-
distribution (if needed). A RETRY statement—essentially a
longjmp function—can be used to restart the TRY block. Fi-
nally, the TRY/CATCH pair is completed with the statement
ENDTRY. Our initial prototype uses macros to implement lan-
guage statements, such as TRY and CATCH.

2.2 Communicator Management
A challenge in try/catch MPI programming models is re-

pairing communicators. Applications may have a set of com-
municators with various relationships, such as parent/child,
overlapping (i.e., they have mutual MPI ranks), and iso-
lated, depending on how communicators are created. In
large and complex MPI applications, identifying and repair-
ing broken communicators is a demanding task since appli-
cations do not usually have a central place where all com-
municators are created. Moreover, using the repaired com-
municator (which usually comes with a different handler) in
the right code location is difficult. For instance, a shrinking
operation on the broken communicator COMM_1 will return
COMM_2, which should be semantically used as COMM_1 by
applications.

FTA provides the ability to automatically repair all com-
municators through communicator management, requiring
no effort from users. Programmers only need to specify the
recovery mode of communicators—either shrinking or non-
shrinking. In shrinking mode, all communicators exclude the
failed processes, while in non-shrinking mode, pre-allocated
spare processes substitute failed ones.

The design of FTA communicator management and auto-
matic communicator repair is illustrated in Figure 3. FTA
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Figure 3: Communicator management and automatic communicator repair
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Figure 4: Asynchronous failure detection and recovery model

first creates the FTA_COMM_WORLD, which excludes the pre-
allocated spare processes from MPI_COMM_WORLD. Without
spare processes, FTA_COMM_WORLD is essentially a duplicate.
Applications are required to use FTA_COMM_WORLD instead
of MPI_COMM_WORLD. FTA exploits PMPI routines to replace
MPI routines that are related to communicators operations.
Therefore FTA is able to track the creation of any communi-
cator by trapping all communicator creation operations, and
recording the corresponding information, which includes a
pointer to the communicator handler and associated ranks
(see Figure 5). This information incurs negligible memory
overhead. FTA maintains the mapping and lineage of com-
municators.

During recovery, FTA first recovers FTA_COMM_WORLD through
the interface FTA_Comm_repair that is provided to users and
it takes recovery mode as the parameter. Given the stored
communicator and failed rank information, FTA finds all

broken communicators and revokes them. Second, FTA
constructs new communicators with the same set of process
ranks. By assigning the pointer of communicator handler to
the new communicator, FTA allows applications to use the
original communicator handler in the application. This fea-
ture of FTA allows applications to keep same semantics and
alleviate the burden on programmers to adjust algorithms
after recovery.

2.3 Recovery
In distributed parallel programs, processes assigned in

different communicators perform work concurrently. Our
model guarantees that processes in the same conversation
will be notified of failures synchronously at the end of the
TRY block. However, failure notification may occur asyn-
chronously in different communicators, and processes in the
communicator that encounter the failure first need to wait
for other processes to perform global repair before contin-
uing. For instance in Figure 4, there are two disjoint com-
municators. A failure occurs in COMM_1, which sees the fail-
ure first. COMM_1 calls FTA_Comm_repari() and waits for a
global repair of FTA_COMM_WORLD. However, without inter-
vention COMM_2 may still be able to continue work until the
point that members in COMM_2 interact with those in COMM_1.
In the worst case, members in COMM_2 will see the failure at
the final termination phase of program. COMM_1 waits for
COMM_2 to participate in the world repair procedure, and
after its completion, COMM_1 and COMM_2 restart locally.

3. EXAMPLES
Figure 6 shows how a bulk synchronous parallel (BSP)

program might use our model. The application writes a
checkpoint at the beginning, which has all the state the ap-
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int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm
*newcomm)

{
int ret = PMPI_Comm_create(comm, group, newcomm);
/* set error handler */
MPI_Comm_set_errhandler(*newcomm, MPI_ERRORS_RETURN);
/* record <comm, group, ranks> */
...
/* assign pointer to the communicator handler */
...

}

Figure 5: FTA wrapper: example use of profiling interface
(PMPI) in FTA to track communicator creation

main()
{

/* Initilize FTA which creates FTA_COMM_WORLD */
FTA_Init();
/* Initial checkpoint */
WriteCkpt();
for (i = 0; i < loop; i++) {

TRY (COMM) {
MPI_Send();
MPI_Recv();
WriteCkpt();

}
CATCH (PROC_FAIL_EXCEPTION) {

/* Application clean up codes here */
FTA_Comm_repair(SHRINK);
/* Load data if needed */
ReadCkpt();
RETRY;

}ENDTRY;
}
FTA_Finalize();

}

Figure 6: Using FTA for shrinking recovery in a synthetic ap-
plication

main()
{

FTA_Init();
/* Initial checkpoint */
WriteCkpt();
for (i = 0; i < loop; i++) {

TRY (FTA_COMM_WORLD) {
/* If Restart, read checkpoint */
if (FTA_RETRY) ReadCkpt();
/* Molecular dynamics simulation */
Simulation();
WriteCkpt();

}
CATCH (PROC_FAIL_EXCEPTION) {

FTA_Comm_repair(NONSHRINK);
RETRY;

}ENDTRY;
}
FTA_Finalize();

}

Figure 7: Using FTA for non-shrinking recovery in CoMD

plications needs to recover. In the for loop, a TRY block
encloses computation and communication for communicator
COMM, followed by a light-weight incremental checkpoint. If a
failure exception is raised, the program calls FTA_Comm_repair
to shrink COMM. Data redistribution may be needed for the
surviving processes. The program calls RETRY to restart
the TRY block.

Figure 7 illustrates FTA non-shrinking recovery for a molec-
ular dynamics proxy-application, CoMD. In CoMD, we en-
close each time step of the simulation in conversation for
the communicator FTA_COMM_WORLD. If process failures oc-
cur during simulation, the exception is raised and followed
by a non-shrinking recovery of FTA_COMM_WORLD. Spare pro-
cesses will join the simulation loop by reading the check-
points to initialize states and keep consistent with surviving
processes. Note that allowing spare processes to join the
loop only works when try/catch is used in the main function.
We discuss challenges in supporting non-shrinking recovery
in Section 5.

4. RELATED WORK
ULFM (User-Level Failure Mitification) [2] proposes a

minimum set of extensions to MPI so that applications are
able to deal with process failures and further to repair states
of MPI. This set of APIs covers three important issues—
failure detection, notification, and communicator repair which
can be used to design various fault tolerance schemes. How-
ever the complexity of handling process failures still remain
for applications such as challenge of code changes and failure
localization problems that we identified in Section 1. Our
work incorporate fault tolerance with try/catch mechanism,
which not only provides programmability but also persists
the recovery flexibility.

FA-MPI (Fault-Aware MPI) [7] proposes a transactional
approach to address failure detection, isolation, mitigation
and recovery for MPI-based applications. It provides a set of
extensions to the MPI standard that applications can adopt
to implement resilient transactions. The basic idea is to
divide the codes into blocks, denoted as TryBlocks. Each
TryBlock is a transaction containing a series of non-blocking
MPI operations that bind to a communicator (of which any
communicators inside a TryBlocks should be a subset). Fail-
ures are detected inside the block and notified to applica-
tions after TryBlock’s finish call. Applications then decide
how to recover the block and need to handle issues such as
inconsistency, communicator repair, etc.

FA-MPI restricts MPI to non-blocking communication op-
erations because FA-MPI desires to check both local and
remote status of operations to gurantee failure detection
and consistency. Non-blocking MPI operations provide a
request handle for tracking the status while blocking MPI
operations lack such capability. Our work FTA-MPI shares
the similarity with FA-MPI on isolating the scope of fail-
ures by grouping a set of operations. However FTA-MPI
does not impose restrictions on blocking operations because
FTA-MPI allows asynchronous failure detection and even-
tual consistent global repair. In addition, FTA-MPI allevi-
ates the recovery burden of applications by automatically
repairing communicators.

NR-MPI (Non-stop Fault Resilient MPI) [12] implements
the semantics of FT-MPI and supports online recovery of
MPI_COMM_WORLD. NR-MPI exploits the RMS (Resource Man-
agement System, i.e. SLURM) for fault tolerance resource
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management, failure detection and notification. Failures are
detected by FD (Fault Detector) and FA (Failure Arbiter)
in RMS. NR-MPI maintains two universe communicators
and creates the world communicator from one of them. In
a failure, NR-MPI reconstructs MPI_COMM_WORLD from the
universe communicator using spare processes. Compared
to NR-MPI, FTA-MPI supports both shrinking and non-
shrinking recovery and handles recovery of all derived com-
municators of MPI_COMM_WORLD.

5. LIMITATIONS AND FUTURE WORK
FTA is work in progress. The following are some of the

limitations and challenges that we plan to address as future
work.

Efficient global failure detection. The FTA model
assumes that at the end of a conversation, all the partic-
ipating processes must agree on whether or not a failure
occurred. This agreement can be implemented using dis-
tributed consensus protocols at the cost of communication
overhead. Our FTA prototype uses the ULFM agreement
functions for failure detection, but it can use other meth-
ods. In the future, we plan to investigate alternative failure
detection and agreement protocols to reduce the overhead
that is involved in each try/catch block.

Arbitrary non-shrinking recovery. Currently, FTA
allows non-shrinking recovery only when a try/catch block
is placed in the main function. This is because when a fail-
ure occurs at an arbitrary location in the call stack, there
is no system-independent way to replace the failed process
with a spare one. Most solutions to create an identical pro-
cess (with arbitrary call-path depth) require system-level
checkpointing, which can be incurs significant performance
overhead. We will investigate how to provide a system-
independent solution for this problem.

Nested error handling. A try/catch model should sup-
port nested failure handling, just as traditional exception
handling models do in object-oriented programming. We
have not explored fully the semantics and applications of
nested failure handling in FTA; however, when provided, it
would allow users to handle a variety of failures, including
silent data corruption detected in the application inside a
code block. This would allow to apply concepts, such as
containment domains [6], in MPI applications.

6. SUMMARY
In this work we describe our initial design and prototype

of FTA, a try/catch programing model for MPI applica-
tions. The goal of FTA is to assist programmers with failure
localization—failures are confined to try blocks—and with
repairing MPI communicators upon failures, using a try/-
catch model. Despite being work in progress, we have tested
our current framework of FTA in a mini application and have
presented in this paper the main building blocks that could
make general and flexible try/catch programming models a
viable resilience solution for MPI programs.
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